[スポンサーリンク]

chemglossary

酵素触媒反応の生成速度を考えるー阻害剤入りー

[スポンサーリンク]

hodaです。以前、酵素触媒反応の生成速度を考える-ミカエリス・メンテン機構-という記事を書きました。以前考えたミカエリス・メンテン機構では、酵素と基質の反応は阻害されないと考えていました。今回は酵素などの働きを阻害する阻害剤を入れ、前回よりも複雑な機構を持つ酵素触媒反応の生成速度を考えたいと思います。

ざっくりミカエリス・メンテン機構とは

ミカエリス・メンテン機構とは最もシンプルな酵素触媒反応の生成速度を求めることができるモデルです。まずは阻害剤がない酵素触媒反応であるミカエリス・メンテン機構から行きましょう。考える機構は以下のモデルです。

(a) 阻害剤なし

E…酵素 (enzyme の頭文字の E)
S…基質 (substrate の頭文字の S)
ES…酵素―基質複合体
P…生成物 (product の頭文字の P)

Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

今回の機構(a)から[ES]の濃度変化は以下の式になります。

KMはミカエリス定数と呼ばれます。

ここで存在するすべての酵素の濃度を[E0]とすると、酵素は酵素単独、または複合体を形成しているので[E0]は以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。
ミカエリス・メンテン機構についてしっかり復習したい方は以前の記事をご覧ください。

今回の本題

ミカエリス・メンテン機構では酵素1種類、基質1種類を考えていますが、実際には阻害剤がいる機構もあります。今回は阻害剤と酵素または複合体がくっついたり離れたりする可逆的阻害を行う反応について考えたいと思います。

(b) 拮抗阻害

阻害剤と基質が酵素の同一部分に作用するために競合します1

I…阻害剤

(a)阻害剤なしのときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。(a)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

阻害剤・酵素複合体EIの解離定数をKiとすると以下の式で表されます。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

(c) 不拮抗阻害

今回の機構の阻害剤は酵素・基質複合体に作用します1

(a)阻害剤なし、(b)拮抗阻害のときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。(a)(b)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

阻害剤と酵素と基質の複合体ESIの解離定数をKiiとすると以下の式で表されます。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

(d) 拮抗阻害+不拮抗阻害

(b)拮抗阻害と(c)不拮抗阻害を組み合わせた機構は以下のようになります1

(a)~(c)のときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。­(a)~(c)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

(b)拮抗阻害で登場した解離定数Kと(c)不拮抗阻害で登場した解離定数Ki­iを用います。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

Lineweaver-Burkプロットで直線のグラフを得る

(a)~(d)で求めたPの生成速度の式は縦軸を1/v0とし、横軸を1/[S]とすると直線のグラフが得られます。阻害剤濃度[I]を変えることにより、どのような阻害が起きているか判断をすることが可能なこともあるので有用でしょう。

(a) 阻害剤なしのLineweaver-Burkプロット

従って(a)阻害剤なしのLineweaver-Burkプロットは以下になります。

 

(b) 拮抗阻害のLineweaver-Burkプロット

従って(b)拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると1/[S]の係数が大きくなる、つまり直線の傾きは大きくなりグラフの矢印の向きに直線は変化します。一方切片は[I]によらないので、直線は切片で交わります。

(c) 不拮抗阻害のLineweaver-Burkプロット

従って(c)不拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると切片が大きくなりグラフの矢印の向きに直線は変化します。一方、直線の傾きは[I]に寄らないので、直線は平行になります。

(d) 拮抗阻害+不拮抗阻害のLineweaver-Burkプロット(Ki Kiiのとき)

今回はKi Kiiのときのグラフにしたいと思います。1/v0に0を代入してみます。

これは[I]の値に寄らず、直線は横軸の-1/KMで交わることを表します。

従って(d) Ki Kiiのときの拮抗阻害+不拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると切片、傾きともに大きくなり、グラフの矢印の向きに直線は変化します。今回はKi Kiiを考えているので、[I]の値に寄らず直線は横軸の-1/KMで交わります1

今回取り上げた(a)~(d)までのグラフを並べてみると違いがよく分かります。

グラフを比べてみると阻害剤濃度[I]を変えることにより直線の変化の仕方が異なるので、どのような阻害が起きているか判断をすることが可能なこともあります1

最後に

今回は拮抗阻害や不拮抗阻害について取り上げましたが、競合的阻害、非競合的阻害、不競合的阻害2などと呼ばれていたり呼び方は様々あるようです。
今回はここまで。

参考文献

  1. 赤路健一, 津田裕子, 林良雄, ベーシック創薬化学, 化学同人, pp. 20-22 (2014)
  2. 長野哲雄, 夏苅英昭, 原博, 創薬化学, 東京化学同人, pp. 72-75 (2004)
  3. 水野哲孝, 山口和也, 堂免一成, 東京大学工学教程 基礎系 化学 物理化学Ⅱ:化学反応論, 丸善出版, pp. 45-46 (2018)
  4. 水野哲孝, 山口和也, 堂免一成, 東京大学工学教程 基礎系 化学 物理化学Ⅱ:化学反応論, 丸善出版, p. 15 (2018)
  5. 野田春彦, 生命科学のための物理化学(第2版), 東京化学同人, pp. 248-250 (1992)
  6. 酵素触媒反応の生成速度を考える-ミカエリス・メンテン機構-

関連書籍

ベーシック創薬化学

ベーシック創薬化学

赤路 健一, 林 良雄, 津田 裕子
¥3,300(as of 09/08 09:05)
Amazon product information
創薬化学

創薬化学

長野哲雄, 夏苅英昭, 原博
¥4,988(as of 09/08 09:05)
Amazon product information

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 抗体-薬物複合体 Antibody-Drug Conjugate…
  2. 分取薄層クロマトグラフィー PTLC (Preparative …
  3. ポリメラーゼ連鎖反応 polymerase chain reac…
  4. 水分解 water-splitting
  5. 血液―脳関門透過抗体 BBB-penetrating Antib…
  6. 徹底比較 特許と論文の違い ~その他編~
  7. 原子分光分析法の基礎知識~誘導結合プラズマ発光分析法(ICP-O…
  8. 二重可変領域抗体 Dual Variable Domain Im…

注目情報

ピックアップ記事

  1. ゲオスミン(geosmin)
  2. 兄貴達と化学物質+α
  3. フラーレンが水素化触媒に???
  4. ネイティブ・ケミカル・ライゲーション Native Chemical Ligation (NCL)
  5. 消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立
  6. 決め手はジアゾアルケン!!芳香環の分子内1,3-双極子付加環化反応
  7. マイクロ波によるケミカルリサイクル 〜PlaWave®︎の開発動向と事業展望〜
  8. 4歳・2歳と学会・領域会議に参加してみた ①
  9. 第1回ACCELシンポジウムを聴講してきました
  10. リロイ・フッド Leroy E. Hood

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

可視光活性な分子内Frustrated Lewis Pairを鍵中間体とする多機能ボリルチオフェノール触媒の開発

第 625 回のスポットライトリサーチは、名古屋大学大学院 工学研究科 有機・高…

3つのラジカルを自由自在!アルケンのアリール-アルキル化反応

アルケンの位置選択的なアリール-アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP